
'J 0 " v'

Relative Debugging of Automatically Parallelized Programs*

Coabriele Jost Robert Hood

Computer Sciences Corporation
NASA Advanced Supercomputing Division

NASA Ames Research Center

{gjost, rhood}@nas.nasa, gov

Abstract

We describe a system that simplifies the process of debugging programs produced by computer-aided parallelization

tools. The system uses relative debug,ging techniques to compare serial and parallel executions in order to show where the

computations begin to differ. If the original serial code is correct, errors due to parallelization ,,ill be isolated by the com-

parison.

One of the primary goals of the s3stem is to minimize the effort required of the user. To that end, the debugging system

uses information produced by the parallelization tool to drive the comparison process. In particuhzr, the debugging system

relies on the parallelization tool to provide information about where variables may have been modified and how arrays are

distributed across multiple processes. User effort is also reduced through the use of dynamic instrumentation. This allows us

to modify the program execution without changing the way the user builds the executable.The use of dynamic instrumenta-

tion also permits us to compare the executions in a fine-grained fashion and only im,olve the debugger when a difference has

been detected. This reduces the overhead of executing instrumentation.

1 Background

One of the problems facing scientific programmers on high-end computers is that as performance requirements drive up

the complexity of machines, they also drive up the complexity of programming models used on them. As a consequence,

debugging such codes becomes more difficult. In this paper we describe how automated debugging support can alleviate

some of those problems. We begin b? providing some background on the target machines and programming model that we

are addressing.

1.1 Programming Distributed Memory Computers

A common approach for delivering high performance in computers today is to use a distributed memory architecture.

Such a computer consists of a number of processors connected together in a network. Each processor has its local memory

that it can access directly. Data from other processors must be accessed via the network.

In this paper we consider the SPMD (Single Program/Multiple Data) programming paradigm, where each processor exe-

cutes the same program on a subset of the total data. Using this paradigm, computations being performed by one process

*This work was supported through NASA contlacts NAS 2-14303 and DTI'S59-99-D-00437/A61812D.

*The authors' address is NASA Ames Researcl- Center, M/S T27A-I, Moffett Field, CA 94035.

This paper is an extended version of the paper "Support for Debugging Automatically Parallelized Pro_ams" presented by the authors at AADEBUG
2000, Munich, Germany, August 2000.

will often require data calculated on another process, and data has to be moved between the processes. This data movement

is typically performed by explicit message passing from one processor to another using a message passing library like MPI

[17] or PVM [20]. The development of a parallel program based on message passing adds a new level of complexity to the

software engineering process since not only the computation, but also the explicit movement of data between processes must

be specified. Given the enormous investment made in existing scientific applications, there is a strong incentive to produce

parallel versions through a conversion process rather than re-implementing from scratch.

1.2 Converting Serial Codes to Message Passing Parallel Codes

When converting a sequential program into parallel code, one way to achieve parallelism is to partition the elements of an

array among the processors and have each processor update only the array elements that are assigned to it. A straightforward

way to convert a serial loop into a parallel loop based on message passing is to distribute the loop iterations among the pro-

cessors. The array is logically partitioned into chunks, and each processor is assigned one or more of the blocks. The proces-

sor is then responsible for updating the array elements assigned to it. For example, the Fortran loop

doi= I, n

a(i) = b(i) + 2

end do

could be parallelized by splitting up arrays a and b into contiguous sections. Each processor would execute:

do i = lower, upper

a(i) = b(i) + 2

end do

where lower and upper denote the]ower and upper index of the array section assigned to the processor. Now consider the

loop:

doi= i, n

a(i) = b(i-l) + 2

end do

If array b is partitioned the same way as array a, processor p will have to access data from processor p- 1. Therefore calls to

communication routines have to be inserted. Processor p has to send b(upper) to processor p+ 1 and receive b (lower-1)

from processor p- 1 :

call send(b(upper) , I, real, i_+l, ierr)

call receive(b(lower-l), 2, r,_al, p-l, ierr)

do i : lower, upper

a(i) = b(i-l) + 2

end do

The Mop:

doi= i, n

a(i) = (a(i) + a(i-l)) * (1.5

end do

can not be executed in parallel since data from iteration i is dependent on data from iteration i-l.

In order to determine whether a loop can be parallelized and which updates require data from another process, the array

indices have to be analyzed in order to detect dependences. The analysis has to be done between individual statements, iter-

ations of a loop, and subroutine calls. The technique of dependence analysis is well understood [21] and has been imple-

mented in compilers for code optimization.

Discovering dependences manually and then inserting the necessary message passing calls is a tedious and error-prone

task. There are several systems that assist the user in the task of parallelizing codes. For example, the CAPTools system from

theUniversityofGreenwich[7]cantakeaserialprograminFortran77and,withsomeuserguidance,turnit intoamessage

passingparallelprogram.Theuser'sroleinthisprocessis fairlymodest.Whilethetoolisanalyzingtheserialcode,it may

asktheuserforadditionalinformationinordertoperformamoreprecisedependenceanalysis.Aftertheanalysisisdone,

theuserchoosesadistributionforoneormoreofthearrays.Then,whenCAPTools is producing the parallel version, it may

ask additional questions about the relative values of variables such as "Can N be larger than M?". The result of this process is

a message passing version of the code.

1.3 Errors in Automatically Parallelized Codes

There are several reasons why the automatically generated version might produce results that differ from the serial original

version:

1. Parallelization may change the order of execution in some loops and lead to numerical discrepancies. For example,

performing a sum reduction in a different order could produce different results because of the non-associativity of

floating point addition.

2. The serial code may have errors. For example, if the serial code references an undefined variable, execution of the par-

allel code may produce a different result by reading a different value for the undefined variable.

3. The tool for automatic parallelization may be buggy.

4. The user can introduce errors by providing incorrect inputs to the tool, e.g., incorrect responses to the system's queries

or incorrect removal of dependences,

Discrepancies due to reasons i and 2 are not specific to parallelization, but can arise from any compiler optimization. Dis-

crepancies due to errors in the too] depend on the maturity of the tool and are hoped to be rare. Discrepancies due to incorrect

user inputs can take several forms, as we discuss below. In order to be as specific as possible in these scenarios, we consider

user interactions with, and code generated by, the CAPTools system. Similar errors are possible with other parallelization

tools.

By its nature, the CAPTools system, like any parallelization support tool, has to be conservative in its assumption about

data dependences. Often the existence of a data dependence will depend on certain input parameters. In such a case parallel-

ization will not be performed in order to assure correctness of the code for all possible input values. The strength of the

CAPTools system lies in the fact that it allows the user to provide information about values of certain variables. This knowl-

edge leads to a more precise dependence analysis and the generated parallelized code will be highly efficient. The drawback

is that this also opens a window to the introduction of errors. Consider the following code fragment as an example:

program linearize

C main routine

double precision phi2(lO0_]O0) , phi3(lO0,100)

read idim

d;j = i, 100
do i : I, i00

phi2(i + j*lOO*idim) = phi2(i + j*lOO*idim) +

0.5 * (phi3(i-l,j)+phi3(i+l,j)+phi3(i,j-l)+phi3(i,j+l))
end do

end do

call output (phi2, nptsx, nptsy)

end

If idim > 0, the j-loop can be parallelized. If idim=0, the j-loop carries a dependence, since phi2 (i) from iteration j

is used in iteration j+l. The value of idim is not known at compile time. By default, CAPTools will assume a dependence

and not parallelize the loop. However, it is possible for the user to inform CAPTools that idim>0. If this is not true for cer-

tain sets of input data, the produced results will be incorrect. Among the future plans for CAPTools is the insertion of asser-

tions into the generated code to catch these kind of incorrect user assumptions. At the moment, however, this feature does

not exist. Also, the addition of assertions might become rather expensive in some situations.

There could also be situations where CAPTools does not have access to all of the source code. For example, suppose the

source code of subroutine sub is not provided, and the user incorrectly says that the statement

call sub(a, n)

does not modify array a. This may result in a parallelized loop where a processor uses stale values for parts of a instead of

the up-to-date ones residing on another processor.

As a third scenario, consider the loop:

do j = 1, n

a(ind(j)) = a(ind(j)) * 0.5

end do

If CAPTools has no further information about the array ind, it will assume a dependence and not parallelize the loop. The

user, however, may have special know'ledge that would make the loop paralIelizable. For example, in this case he may know

that ind (j) =j. For these situations CAPTools allows the user to explicitly manipulate the results of the CAPTools depen-

dence analysis. Again, this creates the possibility of introducing errors. In section 6 we give a detailed example of this sce-

nario.

A programmer trying to isolate such bugs in the parallel program faces a daunting task. Not only has the serial source

code been sprinkled with calls to communication libraries, but the loop structure may have undergone transformations as

well. Since the parallelization tool attempted to optimize the communication patterns, the programmer must use sophisti-

cated reasoning to determine whether a processor is in fact using a current or stale value. Figure 1 contains a small example

of how serial code is transformed by CAPTools.

From the programmer's perspective, rather than attempting to debug the parallel program directly, a more promising

approach is to determine where the parallel computation begins to differ from the serial one. This could be done by instru-

menting both codes with print statements and examining the outputs, or by running two debugging sessions side-by-side.

Both of these approaches have the drawback, however, that the programmer is required to deal with the tool-produced code

in the parallel version.

The goal of our work is to provide _upport for automatically finding bugs in programs parallelized with tools. We feel that

such a goal is feasible because we haxe:

• a reference program (serial co_e) for determining the expected behavior, and

• mapping information from the parallelization tool that conveys how the serial program was transformed into the par-

allel one.

This combination permits the debugger to do side-by-side executions of the serial and parallel versions of the code. In partic-

program main

real*8 u(0:33, 0:33),

call loop (u, v)

end

v(0:33, 0:33)

subroutine loop (upar, vpar)

real*8 upar (0:33, 0:33), vpar

integer i, j, dl, d2

dl = 33

d2 = 33

do i = 0, dl

do j = 0, d2

upar (i,j) = 0.

vpar (i,j) = I.

end do

end do

do i = i, 32

do j= i, 32

upar (i,j) = upar(i,j)

end do

end do

return

end

(0:33, 0:33)

0.25 *

(vpar(i-l,j) +

vpar(i+l,j) +

vpar(i, j-l) +

vpar(i, j+l))

PROGRAM PARALLELmain

INTEGER CAP_LEFT, CAPRIGHT

PARAMETER (CAP_LEFT=- 1, CAP_RIGHT=- 2)

REAL* 8 u(0:33,0:33) ,v(0:33,0:33)

INTEGER CAP_BLu, CAP_BHu

COMMON /CAP_RANGE/CAP_BLu, CAP_BHu

INTEGER CAP_ICOUNT

CALL CAP_INIT

call CAP_SETUPPART(0,33,CAP BLu, CAP BHu)

call loop(u, v, CAP_BLu, CAP_BHu)

CALL CAP_FINISH()

END

subroutine loop (upar, vpar,

+ CAP_Lupar, CAP_Hupar)

integer CAP_LEFT, CAPRIGHT

PARAMETER (CAP_LEFT=-1, CAP_RIGHT=-2)

REAL*8 upar(0:33,0:33) ,vpar(0:33,0:33)

integer i,j,dl,d2

integer CAP_Lupar, CAP_Hupar

COM_4ON / CAPRANGE/CAP_BLu, CAP_BHu

integer CAP_BLu, CAP_BHu

integer CAP_j

di=33

d2=33

do i=MAX(0,CAP_Lupar),MIN(dI,CAP_Hupar) 1

do j=0,d2,1

upar (i, j)=0.

vlDar (i, j) =i.

enddo

enddo

do CAP_j=1,32,1

CALL CAP_EXCHANGE (vpar (CAP Hupar+l,

+ CAP_j) ,

+ vpar (CAP_Lupar, CAP_j)

+ 1, 3, CAP_RIGHT)

enddo

do CAP_j=1,32,1

CALL CAP_EXCHANGE (vpar (CAP Lupar- 1,

CAP_j) ,

vpar (CAP_Hupar, CAP_j) , 1,3, CAP_LEFT

enddo

do i=MAX(I,CAP Lupar) ,MIN(32,CAP_Hupar) ,i

do j=i,32,1

upar (i, j) =upar (i, j)+0.25" (vpar (i-l, j)+

vpar(i+l,j)+vpar(i,j-l)+vpar(i,j+l))

enddo

enddo

return

END

Original serial code. Output of CAPTools.

FIGURE 1. How CAPTools transforms a serial loop. The communication calls inserted in the
output, such as CAP_EXC_m_GE, refer to CAPTools-provided routines that are implemented in an

appropriate way for the target machine (e.g., in MPI)

ular, the user could compare correspCmding states between the two executions without being required to look at the parallel

code. In the next section we will discuss possible approaches for automating the execution comparison process.

2 Support for Relative Debugging of Automatically Parallelized Programs

There are many situations in software development where it is helpful to find out how two related programs differ in

behavior. One example is that of locating a bug that was introduced between successive versions of a program. Relative

debugging[1] is a technique that compares data during execution between a program that produces correct results and one

that produces faulty results, to narrow down at which point discrepancies occur.

The technique of relative debugging is directly applicable to the situation of debugging automatically parallelized code

since we can assume the existence of a sequential version that produces the correct results. Let us assume we have a sequen-

tial program Ps and a parallel program Pp that has been derived from P_ by running its source code through a parallelization

tool such as the CAPTools program described earlier. If Pp crashes or produces wrong results, we could isolate the bugs by

comparing data between Ps and Pp. In doing such a comparison, there are several issues to address.

What data values should be compared between the two executions? A good starting point is a user-specified value

that has been determined to be incorrect by examining the results of a previous run. The testing could be made more precise

by also comparing values used to define the known incorrect one.

When during execution should they be compared? One possibility would be to perform the comparison immediately

after any statement that could change a value of interest. This might be prohibitively expensive in execution time. Another

approach is to do a comparison before and after every subroutine execution that could change the value. This effectively

brackets the error location to one subroutine. A combination of both methods would first narrow down the discrepancy to a

subroutine by coarse-grained comparisons, then re-execute and apply fine-grained comparison within the subroutine.

How do we know if the values are different.'? Testing equality is something that will vary from application to applica-

tion. For example, in some programs, scalar values may be considered "the same" if they are within some tolerance. Arrays

might only be considered the same it" all corresponding elements are equal. Alternatively, it may be acceptable to calculate

checksums of arrays and then compare the sums.

How do we get values from multiple address spaces to a place where they can be compared? There are at least three

approaches for this.

• One way to perform the comparison debugging would be to manually insert statements to print the array data to a file,

recompile, rerun, and then inspect the printed data from the two executables. The drawbacks of this method are obvi-

ous, particularly when many processes are involved.

• Another way would be to use ;m enhanced debugger that controls both executables. ,_r_ then have the debugger insert

breakpoints, compare the data at the breakpoints, and stop when differences are detected. This approach is taken by

the GUARD project [1][2][3].

• A third technique is to have the. two computations establish communication, transmit and compare their data, and stop

when differences are detected. This can be achieved by instrumenting the source code with routines that send or

receive data and perform the comparison. This approach was used as early as 1985 at NASA Ames to debug an FFT

code that had been ported to a 4-CPU Cray 2 and showed subtle intermittent problems [4]. We have subsequently

successfully employed this technique when porting codes to new machine architectures.

How is distributed data handled, as in the case where a distributed array is being compared to a serial analog? If

an element-by-element comparison is requested, the distributed array needs to be reconstituted. Thus, array distribution

information is required. If checksums are being compared, each process in the parallel computation could calculate a partial

checksum. Those values could then be aggregated and compared to the serial checksum.

2.1 The Role of the Parallelization Tool

If a tool is used in the parallelization process, some of the questions of the previous section can be answered without user

intervention. Parallelization support tools such as CAPTools perform four major steps:

• data dependence analysis across statements, iterations of loops, and subroutine calls,

• partitioning of array data,

• masking calculations (such as distributing loops), and

• generating necessary calls to communication library routines.

If all the information generated in those steps is gathered in a database, the following kind of information is statically avail-

able:

• definition-use chains for array elements across statements and subroutines resulting from dependence analysis and

• information about which part of an array belongs to a certain processor, resulting from data partitioning.

The first item of information can be used to identify those functions and subroutines that modify a certain array and should

therefore be instrumented for comparison. The second item can be used to determine how a distributed array maps to its serial

analog.

2.2 The Role of the Distributed Debugger

In a relative debugging system for tool-parallelized codes, the distributed debugger provides the interface for the user. For

example, the user could steer the comparison activities by selecting the arrays that should be compared. In addition, the

debugger controls the executions being compared, retrieves information from the parallelization database, and instruments

the target programs by having appropriate function calls inserted dynamically into the executables. Finally, the presence of

the debugger will permit more extensive state examination and control of execution during the steps taken to isolate the par-

allelization bugs.

While the technique of relative de,bugging can be applied to all programming models, the prototype implementation of

our debugging system currently only supports SPMD programming. An extension of our system to other programming par-

adigms is theoretically possible, but would require very extensive mapping information between reference and faulty version

of the code.

3 Prototype Implementation

As part of ongoing work in a debugger research project at NASA Ames, we have built a prototype relative debugging sys-

tem for tool-parallelized codes where we try to minimize the amount of user intervention required. In this section we

describe its implementation and in the process discuss how it answers the questions raised in the previous section.

3.1 Determining Locations and Variables to be Compared

Besides being used to produce the message passing program, CAPTools also provides vital information to the debugging

system. At the heart of CAPTools is a dependence analysis system that examines the serial code in order to establish the

safety of running loop bodies in parallel. After performing dependence analysis, it transforms the serial code to parallel

form, inserting calls to communication libraries, as needed. The results of CAPTools's sophisticated analysis and transfor-

mation phases are stored in a database in the file system. This fact makes it possible for a debugger to find out how a serial

array was distributed for parallel execution and which routines modify that array [15].

From the dependence analysis database, information about location of statements that assign to a particular array can be

obtained. The CAPTools developers have provided us with routines that, given any statement in a program and an array

name, construct a list of all routines that might define the array value that reaches the statement. In our prototype implemen-

tation, the user provides the name of a subroutine and a variable that has been identified as having an unexpected value. For

example, if phi is a suspicious variable in subroutine output, then, by probing the database we might obtain the following

information:

Copy : phi 5

update :phi4

s e tup_gr id :phi 6

This information tells us, that variable phi5 in routine copy,variable phi4 in routine update, and variable phi6 in routine

setup_grid might define the suspicious variable phi. Therefore, we will perform a comparison of these variables in the

corresponding subroutines.

Where the comparisons should be performed depends very much on the desired granularity of the comparisons. For

example, a comparison could be performed every time a distributed array is written to. We restrict ourselves to inserting

comparison routines on entry and exit of routines that modify the distributed arrays of interest. The restriction is due to lim-

itations in our prototype implementation and will be discussed in Section 7

We would like to add a word of caution regarding the completeness of our instrumentation. As mentioned earlier in

Section 1.3, errors in the para!le!ized code are often due to the fact that the user deletes necessary, dependence edges or pro-

vides incorrect information regarding the values of certain input parameters. Using this incorrect information may lead to

failure to instrument the routine where the error occurs. An example would be the follov¢ing situation:

program test

call subl(a, n)

call sub2(a, n)

where the error occurs in subl Let it be defined in subl and used in sub2 and assume that the user has incorrectly deleted

the corresponding dependence edge between the two routines. In this case our system will not instrument sub1 and the error

will not be detected at the exit of subl. Instead, the first discrepancy will be indicated at the entry to sub2. Although that

weakens the result of the relative debuoging, the information will still be helpful to the user, particularly in a large application

code. We will discuss the potential use of information about deleted dependence edges in Section 9

In our prototype implementation, we are taking advantage of the fact that CAPTools tries to preserve the original program

structure as much as possible. For example, no procedure inlining is being performed, and there is a one-to-one correspon-

dence of the subroutine calls that occur in serial and parallel program. CAPTools does, however, perform procedure cloning,

i.e., in some cases, parallel as well as serial versions of the same procedure exist. We are taking this fact into account by

instrumenting the cloned subroutines as well. Loop restructuring that might occur during the parallelization process, such as

loop interchange or loop fusion, can make the determination of instrumentation points at statement or loop level difficult,

requiring detailed mapping informati_n between the two versions of the code. Due to the coarse level of our instrumentation,

which only occurs at entry and exit of subroutines, we do not have to worry about loop restructuring transformations in our

current prototype implementation.

Having determined where and what to compare, we also need to address the situation where the suspicious variable is a

distributed array. CAPTools provides two ways to allocate distributed data. In the replicated data approach, each process

allocates the whole array and updates its own part of the data. In the reduced memory approach, each process allocates

memory only for the block of data that it is responsible for and possible overlap regions. To perform a comparison we need

to know how distributed data from the parallelized program maps onto its undistributed counterpart. Again, we can retrieve

this information from the data base with routines provided to us by the CAPTools developers. Using the replicated data

approach, we obtain the following information when probing the data base, if phi is an array declared in subroutine

update:

information for symbol phi in routine update:

symbol-name : phi

declaration: (16,16)

dimensionality : 2

partition-index: 1

partition-bounds: CAP_LOW phi, CAP_HIGH_phi

This tells us that in subroutine upda t e, array phi is a 2-dimensional array of size 16xl 6. It is partitioned in the first dimen-

sion. Each process will calculate the partition phi (CAP_LOW.../3hi : CAP_HIGH_phi, 1 : 16) of array phi (1 : 16, 1 : 16). In

case of 4 processors and blockwise distribution, CAPLOW_phi will be 1, 5, 9, and 13 on processes I, 2, 3, and 4, respectively.

CAP_HIGH,hi will be 4, 8, 12, and 16. This knowledge enables us to compare the distributed array from the parallelized

code with the corresponding sections of the undistributed array in the serial program. Similar information is available for the

reduced memory data allocation scheme.

3.2 Comparing Data Residing ill Different Address Spaces

As indicated in Section 2, we perform relative debugging by instrumenting the programs with calls to subroutines that

establish communication and perform the comparisons. One of the efficiency concerns we had in our design was avoiding

unnecessary copies of data values, especially large arrays. For example, in the case where the serial version of an array needs

to be compared with its distributed a:lalog on an element-by-element basis, we don't want to transmit both arrays to a corn-

parison agent. Instead, we would prefer to transmit one array to the address space of the other and perform the comparison

there.

Our prototype system uses two routines running in the address spaces of the target processes in order to accomplish the

comparison of data from different processes.

• One routine resides in the parallelized code and sends to the serial code either the local contributions of a distributed

array or the local checksum of a distributed array depending on which way of comparison is selected.

• The receiving routine is in the reference executable. It receives the local contribution from each process of the parallel

executable and compares it wLth the corresponding data of the undistributed array. When a mismatch is detected, a

special function is called to indicate that fact.

As mentioned above, we will perform the comparisons at entry and exit of suspicious subroutine calls. Ifsubl and sub2

are both instrumented routines in the program, the following error scenarios are possible:

• Values correct on entry to subl, wrong on exit from subl: The routine subl has been identified as the culprit and has

to be further investigated. The error could also be in an un-instrumented routine called from subl.

• Values correct on entry to sub], wrong on entry to sub2: Routines subl and sub2 are on the same call stack. The error

occurred before the call to sub2. possibly in an un-instrumented routine. The discrepancy could potentially be due to

un-initialized data rather than an error.

• Values correct on exit from subl, wrong on exit from sub2: Routines subl and sub2 are on the same call stack. The

error occurred after the return from subl, possibly in an un-instrumented routine.

• Values correct on exit from subl, wrong on entry to sub2: Routines subl and sub2 are not on the same call stack. The

error occurred between the two calls, possibly in an un-instrumented routine. Again, the discrepancy could be due to

un-initialized data rather than an error.

Another issue concerning comparing of data is determining the particular comparison test to use. Our prototype imple-

mentation provides the following alternatives for checking of distributed array data:

• The local checksums of all parts of the distributed array are added and compared to the checksum of the undistributed

array. An error is reported if the difference of the checksums exceeds a user supplied threshold. No array distribution

information is required to perform this comparison.

• The local checksum of each part of the distributed array is compared to the corresponding partial checksum of the

undistributed array. An error is reported if the difference between one of the checksums exceeds a user supplied

threshold. This method requires array distribution information so that corresponding array sections can be identified.

• An element-by-element comparison of undistributed and distributed arrays is performed. An error is reported if the

difference in one of the elements exceeds a user supplied threshold.This comparison, just as the previous method,

requires array distribution infermation.

We are currently adding up the array elements to build a checksum. By comparing the difference of the checksums to a user

supplied threshold we have a mechanism for ignoring small numerical differences. This method has been sufficient for our

current needs. For the future we might consider a more sophisticated hashing algorithm as used for example in cryptography.

10

Suchareductionoperationwouldrequirebitwiseequivalenceinthecomputationratherthannumericalequivalence.

3.3ProgramInstrumentation
Thenextquestiontoaddressisthatofhowthecallstocomparisonroutinesgetinsertedintotheexecutables.Havingthe

usermodifythesourceisclearlynotanoptionforanautomateddebuggingsystem.Inourprototypeweusedynamicinstru-

mentationbasedontheDyninstAPl, a dynamic code adaptation toolset from the University of Maryland [8]. We chose to use

dynamic instrumentation for two main reasons:

• We wanted to avoid the context switches that would result from fine-grained instrumentation being executed in the

debugger. Such context switches could slow down execution by several orders of magnitude [16].

• We also wanted to minimize what was required of the user. By using dynamic instrumentation we can avoid changes

to the compilation process.

The DyninstAPl comes as a set of library routines which provide a portable way of inserting new code into a running program.

The new code segments can be used to instrument the program in such a way that execution time does not suffer unduly. Be-

sides inserting code segments, the DyninstAPl allows operations like:

• attaching to and detaching from a running process,

• inserting or removing subroutine calls from the application program,

• stopping, continuing, and terminating an application program, and

• reading from and writing to areas of memory of the application program.

For example, by using the DyninszAP1 it is straightforward to patch a running program so that function execution counts

are collected. While such a thing is also possible in a conventional debugger, its interpretation of each piece of instrumenta-

tion would require several context switches. This can slow down the execution time of some programs by several orders of

magnitude. When done using the D.vnmstAP1, the function counts will be collected in the address space of the program

itself, and the effect on execution time is minimized.

Another key feature of the DyninstAPl is that the interface is analogous to a machine-independent intermediate represen-

tation of the instrumentation as an abstract syntax tree. This allows the same instrumentation code to be used on different

platforms.

In our relative debugging system, in order to insert calls to the above routines at appropriate points, we use a process that

we call the Instrumentation Server (IS). It uses the DyninstAP1 to control and modify the executables. In a gdb-like manner,

this program accepts commands from standard input. The most important commands are:

• attach: attach to a process,

• createpoint: create an instrumentation point in a process, and

• insertCall: insert a function1 call at an instrumentation point.

The commands take arguments such as process ID, names of executables, routine names, and specifications of the arguments

to be passed to the instrumentation fimctions. An example is provided in Figure 6.

11

3.4 User Interface and System Coordination

To coordinate the actions of the various software components involved and to provide an interface to the user, we use

p2d2, a portable distributed debugger developed at NASA Ames [19]. One of the goals of the p2d2 project was to build a

debugger for distributed programs v_hich was both portable across a variety of target machines and whose user interface

scaled to be able to debug at least 256 processes. The result of our work [10] is a debugger that runs on a variety of Unix-

based machines and can be used on both MPI and PVM applications. To achieve the portability goal, p2d2 abstracted serial

debugging objects and operations in a service layer. In the current implementation, this "debugger server" is in turn layered

on gdb, the debugger from the Free Software Foundation [9].

In recent work we extended p2d2 so that it could provide a global view of distributed data [11]. P2d2 collects the local

data contributions from each processor and assembles a global picture. For this process information about how the array is

distributed across the processors is necessary. P2d2 can obtain this information either from a database, such as the one pro-

duced by CAPTools, or by having the user provide it via a dialog box.

Getting the components described in Sections 3.1, 3.2, and 3.3 to cooperate to solve the relative debugging problem is the

job of p2d2. It retrieves the necessary information about critical routines and array distribution information as described

above and passes it to the executables via IS. Just as in the case of the global array viewer, this information is obtained by

probing the CAPTools database mentioned earlier. Having retrieved information about where to instrument, p2d2 then inter-

acts with IS to insert the initialization call that provides the distribution information as well as the calls that move the data

between processes and perform the comparison.

4 Behind the Scenes of a Relative Debugging Session

To illustrate what activities need to be coordinated, consider the following scenario from the user's perspective. After

having used CAPTools to parallelize a program S, the user runs the resulting code P and finds it doesn't compute the same

answer. To prepare for a p2d2 debugging session, the user has to link his application with a special version of MPZ_Init

which provides the following functionality:

• The process !D of each MPI wacess is written to a file.

• The program is put into an infinite sleep loop.

The added functionality allows us to attach to the processes of the parallelized version of the code before they progress in

their execution.

Now the user starts p2d2 with the command line:

p2d2 -R "mpirun np 4 P" S

which requests that p2d2 compare the execution of "mpirun -np 4 P" with the execution of S. After p2d2 starts up, the

following sequence of events occurs. It is depicted in Figure 2.

1. P2d2 starts a gdb to control execution of S. Then p2d2 requests that gdb insert a breakpoint at the beginning of process

S and at the entry point of function "__p2d2Di f fDetected". This is the function, discussed in Section 3.2, that gets

called when a difference is detected

12

Key
-I fork; exec

.... _ read/write

.... attach

FIGURE 2. Coordination of the comparison activities.

2. The user then selects an array in p2d2's source display and invokes the Run operation. P2d2 issues a "run" request to

the gdb controlling S.

3. P2d2 issues the shell command "mpirun -np 4 _'.

4. The four processes resulting from that command record contact information, including their process ID's, in a file.

5. After it sees that the contact file has been created, p2d2 starts up IS.

6. IS attaches to the process running S.

7. P2d2 reads the para[let execution contact information from the file system. It then sends the attach requests to IS.

8. IS attaches to the four processe_ running P..

9. P2d2 consults the CAPTools database and retrieves information about distributed arrays and which functions will need

to be instrumented. It also provides the local name in the function of the array that needs to be monitored.

Then p2d2 and IS complete the instrumentation of the processes and proceed with the execution.

• IS inserts instrumentation into the process running S and the four processes running R

• IS detaches from the pprocesses.

• IS notifies p2d2 that the instrumentation of S is complete. P2d2 sends a "continue execution" request to the gdb con-

trolling S.

• When the inserted instrumentation in S and P is executed, it establishes communication links between the serial and

parallel processes, In our current prototype implementation, we use named pipes for communication.

• At the function entry and exit points that were instrumented, the parallel processes send their state information to the

serial process. It compares the parallel data to its own. If there is a difference, it calls _._.p2d2Di£ fDetected, which

causes a trap because of the breakpoint that was set there.

13

C

C

C

program example

main routine

double precision phi2 (0:i01,0:i01)

double precision oldphi2(0:101,0:101)

read (5, *) n, m

doi= i, 43

indl (i) = i + n

ind2 (i) = i + m

end do

call setup_grid (phi2)

do iter = i, i00

call copyphi (oldphi2, phi2)

call update (phi2, c,ldphi2)

end do

call output (phi2, nptsx, nptsy)

return

end

subroutine output (phi3)

Routine that prints the result

d;'j = 0, nptsx+l

do i = 0, nptsy+l

phi7 (i,j) = phi3 (i,j) !Def

end do

end do

write (8,*) phi7

end do

return

end

subroutine copyphi (oldphi5, phi5)

Routine that saves old values

_;j : 0, 43
do i = 0, 43

oldphi5(i,j) = phi5(i,j) !Def

end do

end do

return

end

subroutine update (phi4, oldphi5, indl,

ind2)

C Routine that updates array

do j=0,nptsx+l

do i=0,nptsy+l

oldphi4(i,j) = oldphi5(i,j)

end do

end do

do j=l,nptsx

do i=l,nptsy

phi4 (i,j) = !Def

phi4(i,indl(j)) +

0.25 * (oldphi4(i, ind2(j)) +

oldphi4(i, j+l))

end do

end do

return

end

subroutine setup_grid (phi6)

C Routine to set up the initial

C grid values

do j=0,nptsx+l

do i=0,nptsy+l

phi6(i,j) : 0.0 !Def

end do

end do

do j=l,nptsx

do i=l,nptsy

phi6(i,j) = 1.0 !Def
end do

end do

return

end

FIGURE 3. Example program source outline.

• When p2d2 is notified of the lrap, it determines that the cause is a difference in state between the serial and parallel

executions. It then presents the information to the user.

5 An Example Debugging Session

Suppose a user is parallelizing the Fortran program outlined in Figure 3 with CAPTools, During the main iteration loop, the

elements of an array are updated by adding a linear combination of values from the previous iteration. The elements used for

the update are referenced by indirect addressing. The calculation of the address is determined by the offset values n and m,

which are being read at runtime in the main program (see Figure 3). The user decides to parallelize the code in the second

array dimension.

During the parallelization process, the user examines the dependence graph with an eye for removing dependence edges

that might result in unnecessary co nmunication or might prevent parallelization altogether. While this gives the user an

opportunity to improve code performance, it can also result in incorrectly behaving code.

Figure 4 shows the CAPTools dis.play of the dependence edges indicating true dependencies in routine upda<e. A true

dependence, carried by the second loop index 5 has to be assumed in line 10 of the routine, since the value of the offset n

14

S

6

7

8 :

9

10

11 :

12 :

13 :

14 :

1S :

16 :

17 :

18 :

19

Falsely remov__

:phi4

Ok to remove.

FIGURE 4. Examining and manipulating data dependences with CAPTools.

could be negative, but greater than -41:t.This would lead to a dependence cycle which prevents parallelization of the loop. Let

us assume the user has the knowledg,_ that the offset n is greater than or equal to 0, In this case the dependence edge can be

removed, enabling parallelization of the loop. Let us further assume that the user, now incorrectly, also removes the edge

resulting from the definition of element oldphi4 (i, j) in the first loop and the reference of oldphi4 (i, ind2 (j)) in the

second loop. In a real application a u,_;eroften has to examine dozens of dependencies. In order to achieve a satisfactory level

of parallelization, the user will have to remove unnecessary dependence edges, and it is not uncommon to remove the wrong

edge. In our example, let us assume that the actual value ofm is -1. In this case, removing the dependence edge between the

statements in line 10 and 15 will result in missing communication of updated values, as we shall see later on.

The user then runs the resulting code (named "par_test") and notices that the values of array phi7 printed in routine

output are different from those printed by a run of the sequential version. He then invokes the p2d2 debugger in relative

debugging mode with the command:

p2d2 -R "mpirun -np 4 par_te;t" serial test

where "serialtes t" is the name of the serial executable.

When thep2d2 display appears, the user brings up a dialog box and asks for value of variable phi7 in routine output to

be monitored during execution (see Figure 5). After the user has requested the start of execution, the CAPTools database is

probed behind the scenes. We have i,_dicaled the definitions of suspicious variables in Figure 3 with !Def. The probe deter-

mines that the following arrays should be checked at entry and exit of the corresponding routines:

15

File Edit View Find Data Help

-#- --pid--- _achine --operating sgstem-- executable --state location--

4

4D- function,_dable to insert in check list:

I _ slJbroutlne Qutput (phi3, npts tput :phi7 l
implicit none

f 45- IAddvarii;le ' [Cance_ I Help

I 50-

integer nptsx, nptsg, i, j

double precision phi3 (0:43, O:

Couble precision phi7 I0:43, O:

Oo j = O, nptsx+l

do i = O, nptsg+l

phi7 (i,j) = phi3 (i,d)
end do

end do

t 55-

Co j = O, npts×+1

write (8,*) (m(i,j), i = O, npts_+i)

end do

r_turn

output:

FIGURE 5. Preparing for a relative debugging run in p2d2.

• oldphi5 in copyphi

• phi4 in update

• phi6 in setup_grid

After starting both executions, the routines are instrumented and execution continued. The comparison subsequently

detects a difference in phi4 on the exit of update. The debugger then displays a message to the user, indicating that a dif-

ference was detected in variable phi 4 when exciting subroutine update and that the variable had tested equal when enter-

ing subroutine update. This brackets the error to execution of routine update. When the user inspects the parallel version

of that routine:

subroutine update(phi4,oldphi5)

• . °

do j=MAX(0,CAP_Lindl),MIN(nptsx+I,CAP_Hindl), 1

do i=0,nptsx+l,l

oldphi4(i,j)=oldFhi5(i,j)

enddo

enddo

CALL CAJ__EXCKANGE(oldzhi4(0, CAP_Hind1+1,1,

oldphi4{O,CAP_Lindl, i)...,

do j=MAX(I,CAP_Lindl),MIN(nptsx,CAP Hindl),l

do i= l,nptsy, l

phi4(i,j): phi4(i,indl(j)) +

+

enddo

enddo

return

END

CAPRIGHT)

0.25*(oldphi4(i,ind2(j))

oldphi4(i,j+l))

he sees that there is an exchange of the values of o1 dph i 4 to the right side to obtain the required values of e l dphi 4 (i, j + 1),

but there is no communication with the left neighbor. Since ind2 (j) =j - 1, stale values of oldphi 4 (i, ind2 (j)) are used

16

to update phi4. The missing communication routine is due to the erroneous removal of the dependence edge earlier.

6 Prototype Performance Evaluation

The purpose of this section is to evaluate the feasibility of our implementation approach. To quantify the efficiency of our

system, we conducted a number of timing experiments comparing the runtime of:

• Instrumented vs. uninstrumented code.

• Hand-instrumented vs. Dyninst instrumented code.

• Executables running with our prototype implementation vs. an alternative way to implement relative debugging.

In our prototype implementation _e have instrumented the code dynamically using our instrumentation server IS (and the

DyninstAPl). An alternative way to implement our relative debugging system is to run the processes under a debugger such

as gdb and invoke the comparison routines at breakpoints on entry and exit of subroutine calls. In both cases the comparison

routines must be linked with the executable. Using IS, the call is actually patched into the code. The application is allowed to

run without intervention and the call to the comparison routines will be executed on every entry to and exit from suspicious

routines once the target process is continued. By contrast, in the gdb approach the target processes trap twice on every

instrumented call, at which point gdb orchestrates the call to the instrumentation routine and the continuation of execution

after that call returns. This potentially causes many context switches.

6.1 Description of the Test Environment

We set up a simple test environment which did not include thep2d2 debugger. As a sample application, we used an MPI

program and compared data between a single and a multiple process MPI run. The single process MPI run is considered the

reference version producing the correct results. Communication between the two executables is implemented by using

named pipes and is performed by the comparison routines discussed earlier. The single and multiple process executions syn-

chronize at'ter each comparison. In our timings, we measured the elapsed execution time of the reference program. We built

single and multiple process executable using the special version of MvI_znit which was described in Section 4. The added

functionality allows us to attach to the processes with IS or with gdb, respectively, before they progress in their execution.

In our timing tests we want to insert the function call compit(argl) at the entry and exit point of function

sub/(argl). The routine compit performs the data comparison described in Section 3.2. The source code is contained in

file test. f and the name of the executable is a. out. Each approach is implemented using a simple shell script. For both

methods the shell script starts the executables and reads the file containing the process IDs. When using dynamic instrumen-

tation we proceed as follows: For em:h process, we attach with IS and issue the sequence of commands as given in Figure 6a.

The first command will break the process out of the infinite loop. The subsequent commands create instrumentation

points at entry and exit of subroutine subl and insert calls to the comparison routine compi t. Then IS continues the execu-

tion of the executable and detaches.

In the case of using the debugger we attach with gdb to each of the processes. Each gdb is started with a command file as

shown in Figure 6b. The command tile breaks the processes out of the infinite loop, sets breakpoints at beginning and end of

subroutine subl, and ensures that a ca]l to the comparison routines is executed each time a breakpoint is hit. Note that gdb

17

set pid _GO 1

createPoint pid subl_ ENT}_Y

insertCall pid compit_ 0

createPoint pid subl_ EXIU

insertCall pid compit_ 0

continue pid

detach pid

gdb come.ands:

set _GO 1

break test.f: 50

commands

call compit(argl)

continue

end

break test.f:63

commands

call compit(argl)

continue

end

continue

entry to subl

exit from subl

FIGURE 6a. IS commands FIGURE 6b. gdb commands

FIGURE 6. Command sequence for IS and corresponding commands for gdb

does not allow us to set breakpoints at exits of subroutine calls. We therefore need to set the breakpoint at the appropriate

line number.

The computationally intensive palt of the MPI application is a two dimensional matrix multiplication. We chose an ele-

ment-by-element comparison test. In our timing experiments we vary the following parameters:

• NP: The number of processes m the multiple process execution.

• NLEN: The size of the array &mensions in the single process execution.

• NCOUNT: The number of times that the suspicious subroutine is being called.

• NCOMPUTE: The number of calculations between each comparison.

By varying these four parameters we ,:an investigate the effect on execution time of relative debugging with respect to parallel

scalability, and size of the data being compared, as well as frequency and granularity of the required comparisons. Our timings

were performed on an SGI Origin2000 with a 400 MHz clock rate. We used NP+I CPUs for our timing experiments.

6.2 Discussion of the timing results

We conducted the following tests:
• Test SSS: Small array, small number of comparisons, small amount of computation.

• Test SLS: Small array, large number of comparisons, small amount of computation.

• Test LSS: Large array, small number of comparisons, small amount of computation.

• Test LSL: Large array, small number of comparisons, large amount of computation.

18

Wecomparetheruntimeoftheun-instrumentedsequentialexecutable to the execution time of a full relative debugging

session, Figure 7 shows the timings f(,r a 16 process parallel execution. Note that the time is given on a logarithmic scale. In

1000

A

IO0

1/)

,m

E 10
.c

o 1,.1

c

o 0,1
o
W

t,-
.m

aJ 0.01
E
I--

0.001 r

Test SSS Test SLS Test LSS Test LSL

[] Uninstrumented Run

• Instrumented Run

FIGURE 7. Comparison of un-instrumented and instrumented run on 16 processes

tests SSS, SLS, and LSS, the runtime of the un-instrumented program takes only a fraction of a second and increases to up to

a minute during a relative debugging session. These tests correspond to fine- grained checking with little computation being

performed between the comparisons. For test LSL, which corresponds to a coarse-grained instrumentation, the increase in

run tirneis not as extreme. The timings show that a full relative debugging session could can take a long time depending on

the runtime of the un-instrumented code, the size of the data that needs to be checked, and the granularity of the checks. The

advantage of our method is, that once the user has set up the relative debugging run by indicating an initial suspect variable,

the debugging session can run in batch mode, without any further user interaction. While the p2d2 debugger, and thus our

prototype, currently do not support b_ttch processing, the timings suggest strongly that such an interface is necessary.

Even when running in batch mode, care has to be taken when fine-grained comparison is being used. A completely instru-

mented program making fine-grained comparisons could take a very long time to run. It would probably be faster to make

multiple runs of the code with the instrumentation points changing to narrow down the first difference. In the future work

section below (Section 9) we discuss such a possibility.

In Figure 8 we compare the runtime of dynamically instrumented executables to that of executables whose source code

had been instrumented and re-compiled. Except for test SSS on few processes, where the execution time is extremely short,

we found that there was basically not much difference in the runtime.

19

10

9
8 B

,., o 6

¢,_ .m._=
c _ 5

®.= 4
E =

=_

3
0

1 2 4 8 16

Number of Processes

[] Test SSS

[] Test SLS

[] Test LSS

ITest LSL

FIGURE 8. Runtime comparison of Dyninst vs. hand instrumented executables

Figure 9 shows the ratio of the runtime of relative debugging sessions using our prototype system versus the gdb-based

approach. The timings show that the gdb-based approach has a more severe impact on the execution time than using

dynamic instrumentation, particularly when the frequency of the comparisons performed is high. The timings indicate that

the strength of dynamic instrumentat:Lon, when it comes to relative debugging, is that it imposes little overhead on execution

time when small amounts of data are compared many times. This corresponds to a fine-grained instrumentation on statement

level. Unfortunately, at the time that this study was done, the implementation of Dyninst for the SGI did not allow for arbi-

trary instrumentation, but only at entry and exit of subroutine calls. We will discuss some of the challenges of fine-grained

instrumentation in Section 9.

7 Implementation experiences

While we see great promise in the progress to date toward our goal of automatic support for debugging tool-parallelized

programs, we have also observed limitations. Many of these restrictions are imposed by the foundation software that we

have used to build our implementaticn. For example, the currently released version of CAPTools does not provide informa-

tion in its database about arrays distJibuted across more than one dimension, since this information is not relevant for the

typical use of CAPTools. However, this is not an inherent restriction in CAPTools, and the developers can provide us with a

special version of the database that will allow us to retrieve this kind of information.

In the case of Dyninst, the implementations for the platforms we tested are restricted in several ways. Perhaps the most

significant is that instrumentation can currently only be placed at subroutine entry and exit. It is our understanding that,

20

1.4

1.2

2_ 1! / _ '_TestSLS

m Test LSS

i-°i
1 2 4 8 16

Number of Processes

FIGURE 9. Runtime comparison of IS vs. gdb-based relative debugging.

eventually, the package will permit instrumentation at arbitrary instructions in the code, effectively removing this restriction.

In addition to this limitation, code patched in by the version of the DyninstAPl that we are using is unable to access function

parameters in the ninth position or thereafter. This problem is particularly felt in Fortran codes, where long parameter lists

are common. Dyninst also has a limited knowledge of the symbol table. In particular, it knows the location of global vari-

ables, but not locals or parameters.

We can get around some of the Dvninst symbol table limitations by using gdb to get that information. Unfortunately,

operating system issues come up when both our Dyninst-based instrumentation server and gdb want to attach to the same

process. On some systems, such as i,inux, only one can be attached at a timc. In that case, our implementation will need to

coordinate attach and detach requests. Our experience on Linux shows, however, that a process cannot successfully be

attached by Dyninst after it has been detached. For the purposes of the prototype, we restricted ourselves to an 1RIX imple-

mentation where both gdb and our E,yninst-based instrumentation server could be attached at the same time.

Other issues also arise as a result of trying to debug Dyninst-instrumented codes. For example, when execution stops in a

routine called from an instrumentati_m point, the runtime stack is in a state that gdb cannot handle--there is a return address

on the stack that is outside the range that .t,db is looking for.

In addition to limitations in the software packages used by the prototype, we should also point out some within the proto-

type itself. In particular, the current implementation requires the target executables to include the instrumentation routines

described in Section 3.2. We plan to use dynamic linking in the future to address this restriction.

21

OneadditionallimitationofourWototype is that, while comparing executions we currently require that the checkpoints

to be compared occur in the same order in the two runs. In the future we can address this restriction in a manner similar to

Guard [2] by saving out-of-sequence checkpoints in the file system until the comparison can be made.

8 Related Work

Guard [1][2][3] is a relative debugger for parallel programs developed at the Griffith University in Brisbane Australia. In

contrast to our approach, where two executables communicate data directly with each other and do the comparison, in

Guard the debugger collects the data from the executables and does the comparison. Also, Guard does not aim particularly

at automatically parallelized programs. Information about where to do the comparisons and which parts of the data to com-

pare are provided by the user via the command language. To compare array data from parallel programs, the user must

describe the decomposition manually using a distributed array syntax.

In other work on debugging automatically parallelized programs, Cohn [6] has investigated having the debugger provide

a sequential view of an executing parallel program. While he does not use relative debugging techniques, his analysis of con-

sistency issues between sequential and parallel executions could be useful in identifying candidate instrumentation points

for making comparisons in the relative debugging approach.

The idea of using information from parallelization tools to aid in debugging has also been around for some time. For

example, Hood, Kennedy, and Meltor-Crummey [13] used dependence information from a parallelizing compiler to deter-

mine which data accesses to instrument to find races in a shared-memory program execution.

9 Project Status and Future Work

We have built a prototype of a relative debugging system for comparing serial codes and their tool-produced parallel

counterparts where array comparisons are done either by computing checksums or by doing element-by-element equality

tests. After the user specifies a variable and scope to be checked, the debugger uses the CAPTools database to determine

which variables should be monitored and in which functions. We used the dynamic instrumentation tool Dvninst in order to

minimize the overhead involved in making the comparisons. We ran extensive timings and tested the need in such an envi-

ronment for dynamically inserted procedure calls versus interpreted calls.

In the near future we will integrate the relative debugging features more seamless into p2d2. In particular, we would like

to have debugging requests that the user makes on the serial code, also be performed on the parallel version. In order to do

that, we need to modify the p2d2 user interface to support multiple computations executing simultaneously. In addition, we

must get CAPTools to provide information about how the serial program was transformed into its parallel form. This will

permit us to determine places in the code where there should be consistency between states in sequential and parallel ver-

sions.

Furthermore, while CAPTools allows for cyclic and block-cyclic array distributions, we currently support only blockwise

distributions. In the future we will address this issue.

22

Ourapproachforrelativedebuggingof tool-parallelizeddistributedmemorycodeswillalsoworkforsharedmemory

codesparallelizedwithtoolsupport.[nthenearfuturewewillextendourprototypetoworkwithcodesproducedbyCAPO

[5] which is based on CAPTools and produces OpenMP [18] codes.

At the moment our system only helps to narrow down the error location on a subroutine level. The user still has to has

examine potentially large sections of automatically generated code. In the longer term, we would like to use intraprocedurai

dataflow information from CAPTools in order to pinpoint execution differences to particular statements, rather than proce-

dure bodies. We recently began working with Steve Johnson, of the University of Greenwich, on an implementation that

uses a combination of state examination and re-execution to backtrack detected differences to the first place where they

occur. In this approach instrumentation is inserted at USE points of variables to compare values across programs. When" a

difference is detected, the debugger uses information from CAPTools to find the possible definition points of the variable. If

the values used on the right-hand-si&;s of the definition points are still live, the debugger checks for differences in them. If a

difference is detected, the process is repeated looking at the definition points of the new difference variable. If the values of

the right-hand-side variables have been overwritten by subsequent execution, then these USEs are instrumented and the pro-

gram is rerun. Viewed another way, we are essentially using program slice information [14] to help minimize the number of

instrumentation points, and we are udng liveness information to help minimize the number of re-executions. Our expecta-

tion is that this approach will automatically isolate bugs with great precision.

In our experience, the majority of errors are due to incorrect information provided by the user. In further development of

this work, CAPTools could store information about deleted dependencies and user information in its database. This would

allow the debugging algorithm to inw::stigate if a deleted dependence or other user provided information could potentially be

responsib]e for the incorrect parallel execution. As a first step, a list of possible problems could be displayed to the user who

will then have the opportunity check his assumptions.

Besides the relative debugging work, we would also like to experiment with other uses for dynamic instrumentation in

debugging. For example, we would like to use Dyninst to provide fast conditional breakpoints in p2d2.

I0 Conclusions

In this paper we have described a _ystem that simplifies the process of debugging programs produced by computer-aided

parallelization tools. The system uses relative debugging techniques to compare serial and parallel executions in order to

show where the computations begin _o differ. It uses information produced by the parallelization tool to drive the compari-

son process without user interventior'. In addition, the use of dynamic instrumentation makes the comparisons efficient. We

feel that this approach holds great promise for meeting the goal of providing automated support for isolating bugs intro-

duced in the parallelization process.

Acknowledgments

The authors would like to thank Henry Jin and Rob Van der Wijngaart of NAS for their comments on this paper. Henry

was also particularly helpful as a local expert on CAPTools. We also thank Steve Johnson and Peter Leggett of the University

of Greenwich who were very respoesive in providing routines to retrieve interprocedural information from the CAPTools

23

database. Ravi Samtaney from the California Institute of Technology provided a sequential version of the RM3d code for the

solution of Euler's equations in three dimensions, which we used as a test program. We also thank Randy Kaemmerer of

NASA Ames for his careful reading of the paper and the suggestions he made for improving it.

References

[1] Abramson, D., Foster, I., Michalake,% J., and Sosic, R. 1996. "Relative Debugging: A New Methodology for Debugging Scientific

Applications." Communications of the ACM 39 (] 1).

[2] Abrarnson, D., Sosic, R., and Watson, G. 1996. "Implementation Techniques for a Parallel Relative Debugger." Proceedings of

PACT'96, Boston.

[3] Abramson, D. and Watson, G. 1997. "Relative Debugging for Parallel Systems." Proceedings of PCW 97, Canberra, Australia.

[4] Barker, D. R 1994. Personal Communication.

[5] CAPTools-based Automatic Parallelizer with OpenMP (CAPO). http : //www. nas. nasa. gov/-hj in/CAPO, html.

[6] Cohn, R. 1991 ."Source Level Debugging of Automatically Parallelized Code." Proceedings of the ACM/ONR Workshop on Parallel

and Distributed Debugging.

[7] Computer Aided Parallelization Too!s (CAPTools). http : //captools. gre. ac. uk/.

[8] The Dyninst APl. http :/ /www. c_ .umd. edu/projects/ dyninstAPI/ .

[9] The Free Software Foundation. htt[,: //www. fsf. org/.

[10] Hood, R. 1996. "The p2d2 Project: Building a Portable Distributed Debugger." Proceedings of the SIGMFTRICS Symposium on Par-

allel and Distributed Tools, Philadelphia, PA.

[11] Hood, R. and Jost, G. 2000. "A Debt_gger for Computational Grid Applications." Proceedings of the Heterogeneous Computing

Workshop, Cancun, Mexico.

[12] Hood, R. and Jost, G. 2000. "Support for Debugging Automatically Parallelized Programs." Proceedings of AADEBUG 2000,

Munich, Germany.

[13] Hood, R., Kennedy, K., and Mellor-Crummey, J. 1990. "Parallel Program Debugging with On-the-fly Anomaly Detection." Proceed-

ings of Supercomputing '90, New York

[14] Horwitz, S., Reps, T., and Binkley, D. 1990."Interprocedural Slicing Using Dependence Graphs." ACM Transactions on Program-

ming Languages and Systems 12 (1).

[15] Johnson, S.R, Cross, M., Everett, M. G. 1996."Exploitation of Symbolic Information in interprocedural Dependence Analysis", Par-

allel Computing 22:197-226

[16] Kessler, R 1990."Fast Breakpoints: Design and Implementation." Proceedings of the ACM SIGPLAN '90 Cot_[erence on Program-

ruing Language Design and Implementation, White Plains, NY.

[17] Message Passing Interface. http: //vra_w-unix .rncs. an1. gov/rap±/.

[18] OpenMR http: //www. openmp, org/.

[19] The p2d2 Project. h ttp : / / vamu•.n_ s. nas a. gov / Too I s /p2 d2.

[20] Sunderam, \< 1990. "PVM: A Framework for Parallel Distributed Computing." Concurrency: Practice and Experience 2(4):315-339,

1990.

24

[21] Wolfe, M. 1989.Optimizing Superco,npilersfor Supercomputers. Research Monographs in Parallel and Distributed Computing, MIT

Press, Cambridge, MA.

25

Contact Author

Gabriele Jost

NASA Ames Research Center, M/S T27A-2

Moffett Field, CA 94035-1000
Tel (650) 604 4431
Fax (650) 604 3957

gjost @nas. nasa. gov

Keywords:

Relative debugging, message passing programs, automatic parallelization, dynamic instrumentation.

